
OWASP Seraphimdroid guide and
documentation
By Nikola Milosevic, Furquan Ahmed and Kartik Kohli

Introduction

Android users face many threats and risks. Since modern mobile devices are

almost all the time exposed to the internet and other types of mobile networks, they

are more exposed to the attacks. From the open WiFi networks that can be spoofed

to the Trojan malware applications on the app stores, threats are everywhere

around. Many of the attacks are successful because users are not aware of the risks

and threats. They may act naive and expose themselves to the attacks even more.

These attacks may lead to the identity theft, money theft, losing privacy or they

devices may start acting as part of the botnet network.

In order to prevent attacks on the users, this project aims to develop a set of

guidelines and application that will ensure that users are using their devices in a

secure manner. Project is and always will remain open for everyone to participate

and all project deliverables will be free and open source.

Mission of OWASP Seraphimdroid project is to create, as a community, an open

platform for education and protection of Android users against privacy and security

threats.

On Android, every application operates in a basic sandbox and is prevented from

accessing additional services that require users consent. These services can only be

accessed if users allows the application to use them. Granting of permission is static

and can only be done at the time of the installation of the application. Android

security model leaves most of the hard work for security related approach to the

user. SeraphimDroid aims to provide detailed explanation and documentation on the

permission that android application uses. Some of the permission could cause harm

to user’s money and data, SeraphimDroid scans the applications and predicts

potential malicious behaviour using state of the art Machine Learning algorithm.

SeraphimDroid will also evolve to provide a system for blocking access to premium

services without user’s permission.

An unaware user might keep his device on settings that can open up security

vulnerabilities, SeraphimDroid's “Settings Check” feature scans vulnerable security

settings and notifies user of the potential harm, and the optimal setting that he

should switch to.

Although the android architecture provides a more than solid platform which is

secure and at the same time robust but there are few bits that are not included in the

default android systems. Android has a layered architecture and the each process

runs separately from one another in its own sandbox but this doesn’t ensure the

protection of the device from all the privacy attacks and clearly not from device theft.

SeraphimDroid was developed keeping in mind only the looped aspect of the

Android security architecture and was focused on securing user from losing money

and giving a documentation of permissions, but it has been evolved to an anti-theft

and privacy protecting application.

The Application Locker has been introduced which is a privacy enhancement. As the

title suggest it will put a lock over applications which user choose to lock. It will deny

access to those application to other people in case the passcode entered is

incorrect.

The Service Locker provides protection mechanism for services such as Wi-Fi,

Bluetooth and Mobile Data. It will prevent switching on/off these services if the user

is unable to enter the correct passcode.

Another such useful enhancement is Geo-Fencing. An anti-theft advancement for the

application. It allows the user to create a virtual fencing for the user’s device and if

the device moves out of the fencing, it is assumed that the device is being stolen and

it starts performing operations such as locking the device, wiping data, ringing siren

etc. to protect itself. Of course user could control which operation to enable and not

to enable. This looks quite complete but in case users forgets to enable fencing he

still has to power to perform these operation which could be triggered using a special

SMS. The SMS will contain a secret code on receiving which the phone will perform

these features and moreover it could send you its current location coordinates.

SeraphimDroid overview

SeraphimDroid takes a heuristic and machine learning approach to find out

the potentially malicious or harmful application installed on the user’s phone. These

are based on the permissions these application uses, but besides that it provides

some other security and privacy features as well. All the features that SeraphimDroid

provides are:

1. Permission Scanner

2. Settings Checker

3. Call / USSD blocker

4. SMS Interceptor

5. Application Locker

6. Service Locker

7. Geo-Fencing

8. Remote Lock / Wipe

All these features are helpful to the user, and helps him prevent his phone from

harmful application, data theft, and unwanted money loss to premium services and

device theft. These services are explained briefly.

Permission Scanner

 The scanner will go through all the installed application on the user’s device

and will scan all the permissions each application uses. Then it will fetch the details

about each permission and show the application as red (harmful) or green (safe).

The Machine Learning algorithm will predict the malicious behaviour of the

application based on the respective permissions. The labels predicted are:

1. Green: The application is unlikely to show malicious behaviour

2. Red: The application is likely to harm the user's device, data or both

Settings Checker

 The Settings Checker scans the user's device for vulnerable settings and

informs him about the potential vulnerabilities that can arise from these. It also gives

him a one-click shortcut to go directly to the respective settings page, so he can

change it directly.

 SeraphimDroid by default performs a daily scan of the settings, and notifies

the user via a notification. The user can choose to perform a weekly, fortnight or

monthly scan by selecting the respective option in the settings.

Call / USSD Blocker

 The blocker is built in the application to block outgoing numbers which is not

saved in the user contact list but now it has been evolved to provide the blocking

control to user. The user could choose to block calls as he wants from the setting. A

blacklist is also implemented which will allow user to block only certain numbers on

his will.

 On the other hand the USSD blocker is something kept out of the reach of user

but blocks all the dangerous USSD that could be entered. USSDs includes code to

factory reset, delete user’s data or lock the phone. The USSD blocker prevent these

harmful codes from being executed.

SMS Interceptor

 SMS Interceptor catches outgoing and incoming messages, scans it and

deem the message as being malicious or sent without users notice. Currently,

SeraphimDroid only notifies the user about the danger and user have to take action.

More advancement will be done in upcoming versions.

Application Locker

 This could be considered as more of a privacy feature as user will be able to

prevent access to certain applications like gallery, people, etc. to others who might

access his phone. This will secure others access to user's content and hence is

essentially a privacy enhancement.

 User will have the power to lock any application and unlock it. Whenever a locked

application is started a password prompt is shown, on entering the correct password

only the locked application can be accessed else the application will be terminated.

Service Locker

 This is a protection mechanism from unauthorized use of essential services

such as Bluetooth, Wi-Fi and Mobile Data. It can save the user from both malicious

use, Bluetooth for instance, also cost from services like Mobile Data.

 User can lock these services from the application. Whenever the state of

these services is changed, either switched on or off, the user will be prompted for a

password. If he's unable to provide the correct password, the service will be restored

to its original state.

Geo – Fencing

 Geo - Fencing is something of a new addition to SeraphimDroid. Enabling

Geo-fencing create a virtual fence around the device’s current location. If the mobile

goes out of the range it starts performing some specific action which users selects

while enabling the service. Also, user could enable location updates in case phone

got stolen.

Remote Lock / Wipe

 If user forgets to turn on the Geo-fencing and phone gets lost this feature can

come in handy. This allows user to send a secret code to the user’s device which

activates the service. The phone then lock the phone, wipe the user’s data or send

the current location of the device or all of at once.

 Implementation details

According to new android navigation guidelines best way to provide

navigation in an application is navigation drawer. The drawer uses fragments for

each layout that is displayed on the screen. Following the above guideline access to

each service is given through the fragments. So like any other application

SeraphimDroid starts with a MainActivity.java file which displays the navigation

drawers consisting of 8 main fragments, namely,

2, SettingsCheckFragment.java

3. BlockerFragment.java

4. ApplicationLockerFragment.java

5. ServiceLockerFragment.java

6. GeoFencingFragment.java

7. SettingsFragment.java

8. AboutFragment.java

Implementation detail for each fragment is given below.

Permission Scanner

 Permission scanner scans permission for all the installed application, for that,

it need to get the list of all the installed application. PackageManager class provides

the required method for that

List < ApplicationInfo> appList =

getActivity().getPackageManager().packageManager.getInstalledA

pplication(PackageManager.GET_META_DATA);

appList stores the information of all the installed application, then for each item in the

list permission are fetched and the details for these permissions are retrieved from

the database using a custom class PermissionGetter. All this task is performed

in a separate thread using class AsyncTask, which contains an object svmModel,

which loads a pre-trained SMO Weka model. This instance is then used to predict

the the nature of application, using it's permissions as a 0/1 feature vector. The

Prediction accuracy of our current model is ~88%

ExpandableListView is used to display the installed applications and the child

item for each item displays the permissions that is used by that application. With

each installed application an indication is displayed to show the danger level for that

app and user could uninstall the application by long pressing on the name.

PermissionDescription displays the details about each permission, the threat it

poses, what access it provides to the application and how can it be used to damage

your data or affect your privacy. It has been themed as a dialog box, because that

suits best for displaying some information.

Settings Checker

 Settings Checker scans the Device's settings, using the Settings.Secure API

provided by Android. It can be used to fetch settings for different parameters, such

as Settings.Secure.ADB_ENABLED to check if USB Debugging is enabled, similarly

Settings.Secure.INSTALL_NON_MARKET_APPS to check if Application install from

unknown sources is permitted.

 Settings Checker also has a background service, implemented using

Android's Alarm Manager class, which performs automated checks at regular time

intervals. By default, the interval is set to 1 Day. It can be changed in the settings to

a Week, Fortnight or a Month.

 If the service scans and finds that any of the setting is not set to its optimal

value, it fires a notification. Upon clicking this notification, the user is taken to the

Settings Checker fragment, wherein he can fix the respective settings.

Blocker logs

 The UI is a tabbed view for showing the logs for each Call, SMS and USSD that

could be malicious. The tabbed layout is created using TabHost and ViewPager

together in combination to achieve the required navigation flow and good UI design.

 The broadcast receivers are used to keep check on the malicious activities,

for example unaware message sending, premium calls, execution of harmful USSDs

etc. These Broadcast receiver includes

 1. CallRecepter

 2. SMSRecepter

The CallRecepter class is used to intercept incoming and outgoing calls. Every

call that is placed by any application is passed through this receiver and then it

checks if the called number meets the requirement set by the user i.e. if the number

is saved in users contact details or is not present in the user’s blacklist. User could

access the preferences regarding call blocker in the settings. Any call not meeting

the requirement is logged in the Call logs and is shown in the blocker logs, with the

reason for the blocking.

The SMSRecepter class does pretty much the same but with messages. The

receiver can only handle received messages, for outgoing messages another service

is used because the Android mechanism for outgoing SMSs are different. In case of

calls the calls could be blocked or cancelled but for messages its different and

specially with outgoing messages. There is no way yet known which could be used

to alter the content of outgoing messages, or better block them. The Incoming SMS

are deemed malicious and is reported to the user, if the message content contains

numbers that are not saved in the contact list of user.

OutgoingSMSRecepter is the class which checks if the outgoing SMS is sent by

the user of if the message is sent by some other application. If latter is true a

notification is generated giving the application name which sent the message, also

the content of the message it sent. More control over SMS can be expected in

further development.

Application Locker

 Application locker does just what the title suggests. The locker interface is

simple and it displays the list of all the installed application. With each application

there is toggle button which lets user to lock or unlock the particular application. The

mechanism is simple as is, a database table is created which store the package

name of all the locked application and is empty if no application is locked.

 The heart and soul of application locker is the background service that keeps

track of all the application that is launched. This service is sticky and need to be run

always in the background. Android provides API to get the list of recent running task

on the device, the AppLockService calls getRunningTasks() method of

ActivityManager class object. The list is arrange with the top element being the

most recently executed. Using the top most element of the list it is determined

whether the application launched is locked or not. If locked the password activity is

launched.

The flow chart for the process is shown in the diagram.

The password activity is implemented as given below.

Password Activity

 The password prompt is implemented using a separate activity and is

displayed each SeraphimDroid is started or a locked app is started. The password is

stored in the database in the form of byte array, which is actually the SHA256

hashed passcode string. Java provides the required method to hash the string

MessageDigest digest = MessageDigest.getInstance("SHA-256");

hash = digest.digest(passwordConfirm.getBytes("UTF-8"));

hash is then stored in the Database.

Whenever the user enters the password it is validated by getting the byte array from

the database and comparing it with the string hash of the passcode entered by the

user. If they match password is confirmed and access is granted.

Services Locker

 Services Locker's implementation involves a listener for each of the services.

For ex. Wi-FiStateReceiver for Wi-Fi. This receiver listens to change in state of the

Device's Wi-Fi. If there is a change (User switches on/off the Wi-Fi), SeraphimDroid

password prompt is shown, and the service is returned to it's previous state.

 For ex, if the user switches ON Wi-Fi, Password prompt will be shown, and

Wi-Fi will be disabled by the command:-

 Wi-FiManager.setWifiEnabled(false);

 Switching ON/OFF these services require special permissions -

 Wi-Fi - android.permission.CHANGE_WIFI_STATE

 Bluetooth - android.permission.BLUETOOTH_ADMIN

 Mobile Data - android.permission.CHANGE_NETWORK_STATE

Geo-Fencing

 Geo-fencing is the most resource intensive service, it requires you to provide

Device Administrator Privilege to the application, which controls the device lock, and

wiping of data. Moreover, it asks you to enable GPS for better location tracking, so

GPS is must too. Once these features are enabled only then you could access the

feature of this service to the full extent.

The class that does most of the work is GPSTracker class, this class gets

the current device location from the GPS or network provider whichever is available.

Using the location from this class the GeoFencing service keeps track of the device,

if it is still inside the virtual fence or moved out of it. The center is set to the location

at the time the user starts the service, which acts the center of the fence. After the

service is started the location is queried every 10 seconds. That’s not too much

battery draining but also not losing the timely location tracking that’s needed.

The other important class is GeoFencingService, this class takes care of

all the actions that device must perform in case the device is assumed stolen. The

device is said to be out of the range by calculating the distance from the center

which is the location coordinates used at the time service was started and the

current device location coordinates. The API provides the method to do so which is

Location1.distanceTo(Location2). This class keeps track of the device

location and in case the device is found to be out of the fence, it checks the location

3 more times and when it confirms the phone is out of the fence, it activates the

alarming sound using AlarmManager. Similarly, current location is sent to a

secure number set by user enables the feature.

As this service requires a working GPS, a prompt is made if GPS is

unavailable and unless user enables the GPS the service is inaccessible. A secure

number is required to enable the service to get location and Device Administrator

privilege is also must.

Remote Lock / Wipe

 The Geo-fencing requires user to enable the service first but if the user

forgets to enable the service he could still lock or wipe data of his phone using

remote wipe. Remote wipe uses the same locking mechanism of

DevicePolicyManager. It uses the same broadcast receiver created for received

SMSs. The receiver checks the message for the secret code set by the user, if the

message contains the secret code, it activates the remote services and locks the

device and if enabled wipes the user data from the device.

The main methods responsible for performing the remote actions are:

devicePolicyManager.wipeData (0);

devicePolicyManager.lockNow ();

For sending current location, current location is fetched using GPSTracker,

and using SMSManager API a SMS is sent to the secure number that user believes

could be reached in case the user’s device is stolen. The secret code is stored in

application preferences which is retrieved each time is a new message is received to

check if the message contains the secret code.

Usage details

(Here you can write some details on how it is used. Some kind of short user guide.

You may add some screenshots as well.)

First Start

Before SeraphimDroid can actually be accessed, user needs to create a PIN code to

lock the application. The same code will be used to unlock locked applications. The

process to create a PIN is really simple. When SeraphimDroid is started for the first

time a prompt is displayed to create the PIN which looks like the image below

The PIN needs to be entered twice to make sure the user enters the correct PIN.

Once the PIN is created user will be asked to enter it every time SeraphimDroid is

launched. The PIN needs to be at least 4 digits long.

After the access is granted for SeraphimDroid, you will see the Application locker,

with the list off all the installed application that could be locked, just like in the image

Navigation

 SeraphimDroid is pretty easy to use, all the features can be accessed using

the navigation drawer. The navigation drawer can be access either by sliding from

left or by tapping on the app icon in the action bar as shown in the image below.

In the navigation drawer you can see all the services that SeraphimDroid provides.

Use of each of the service is provided below. In the application, user can see a brief

introduction for each service by tapping on the info icon.

Permission Scanner

 Permission Scanner is the first service that SeraphimDroid provides. It scans

all the installed application and display its danger level using colour codes, as

mentioned in above section. Expanding any application user can see what

permission that application uses. A description about the permissions intended use

and malicious use is also provides within the permission scanner. User can see the

description by tapping on the permission and a dialog will be displayed showing the

details about that particular permission, which includes the general use for that

permission and malicious use as well. User can also uninstall the particular

application just by long pressing the application name in the list. The permission

scanner looks like the image shown below.

Settings Checker

 The next service in the drawer is the Settings Checker. This displays the

device's settings, which are prone to malicious activity if not set to its recommended

state. The one which are not set to its optimal state, a red cross is shown, and also a

“click to go to settings” option which will take the user to the respective settings

screen where he can change the setting. The options which are set to the

recommended setting, a green tick is shown. The screenshot below shows the

Settings Checker Fragment.

Blocker Log

 The next service in the drawer is Call blocker and SMS Interceptor. The Blocker

log displays all the logs for blocked calls, malicious SMSs and harmful USSDs. The

log displays useful information for the user about the blocked call (for example time

of call, number called etc.). Tapping the log item shows more details about that

particular log.User can swipe between tabs or tap the name of the tab to view details

about other logs (SMS Log and USSD log). The navigation kept as simple and as

user friendly as possible. A sample for the log is shown in the screenshot

Application Lock

 Going down the list of service the next on is Application Locker. Quite easy to

understand the use and even more easy to use. All user needs to do is lock the

application he wants to protect and the work is done. Any time the locked application

is launched, the password prompt is displayed on the screen, which prevents the

access to the locked app. Only on providing the correct PIN code can the application

be accessed. The interface is pretty much simple and is shown below. The

screenshot also displays one of the application being locked.

Service Lock

 Much like the Application lock is used to lock target applications, The Service

Lock is used to lock essential Android services, such as Wi-Fi, Bluetooth & Mobile

Data. Whenever a user tries to change the state of any of the above locked services,

SeraphimDroid will prompt for PIN, and only upon successfully entering the PIN shall

the state be changed. Otherwise, the service will be restores to the previous state.

Below is a screenshot of the Service Lock Fragment.

Geo-Fencing

 Geo-fencing contains a Google Maps to show user his current location. Then

there is a button to get his current location for the service to start. Then follows the

range for the perimeter, it can’t be less than 200m because the precision of GPS is

not so accurate. After that there are four check boxes, one for enabling each feature

i.e. lock phone, wipe data, siren and send location.

The service won’t start unless the GPS is on so in case user does not turn the GPS

of the device on a prompt is shown, and if user cancels that prompt, then the button

for starting the Geo-fencing is changed to display GPS prompt. Only when the GPS

is turned on can the service be enabled. This provides better GPS tracking and

location accuracy. The screenshot for Geo-fencing is the below image.

Settings

 The settings is next in the drawer menu, this is the place for setting

preferences for the SeraphimDroid. Here user change the PIN code of

SeraphimDroid, he can set the category of calls that should be blocked and add

numbers to blacklist to block those particular numbers. The settings page also

contains regarding the geo-fencing, user can set secure number, the number of

times after locking the data should be wiped and the interval with which the device

should send its current location.

 The remote service preferences are also accessed from the setting fragment.

These include remote lock, remote wipe, remote location and remote secret code.

Remote Secret code is set by the user to trigger the remote services. There services

are disabled by default, user needs to enable these services before the secret code

trigger could work. A snapshot for the settings fragment is attached.

About

 The about fragment contains the more information about the project. It has the

link to the project page and the code on the GitHub. Also it shows the names of the

developer who contributed to the project along with the name of the owner of the

project. The version information is also displayed in the same fragment.

Conclusion

SeraphimDroid helps the user to understand the android security architecture

more by letting him to the insights of the access modes used by application to

request some services. These services are only allowed if user allows them which

makes user responsible for making choices before installing applications. This might

be a good practice but a general user doesn’t actually seem to know about all the

details, SeraphimDroid provides this details.

Along with the documentation SeraphimDroid also provides some security

and privacy features which helps user secure his phone from theft and also from

malwares. The best part it does is alert the user about the money costing apps and

saving users money.

Overall the application is functional and is useable but it’s a software and

there is always possibility for it to be improved. In its latest update, SeraphimDroid

uses state of the art Machine Learning algorithm to classify apps into “Malware” or

“Goodware”. An online database can also be created with the list of all the harmful

application names which could cause user harm, this list will be created by people

reporting the malware apps.

Also the SMS detection could be improved and in current version the SMS is rated

harmful if it contains unsaved phone numbers which could be improved again by

having a database containing the details about the malicious SMS.

Furthermore, a widget could be created to enable or disable the Geo-fencing with the

touch of the button. This will make it really easy to enable the anti-theft feature of the

phone. That’s all.

